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ABSTRACT

Structural flexibility effects exert a considerable influence upon the stabil-

ity of booster orientation flight control systems. This paper presents a rela-

tively simple method of using root locus techniques to develop the factored

open loop relating function for the system including these flexibility effects.

The analysis procedure is very useful in the design of these control systems

since the solution to the stability problems encountered becomes evident from

the form of the factored open loop relating function.

The particular manner in which the development takes place enables one

to understand the effects of the major design and physical parameters upon

the form of the open loop relating function, and in so doing, bridges the gap

between these parameters and their effect on the performance of the closed

loop system.

Armed with the basic understanding which the analysis procedure provides,

it is possible to interpret the performance of a parameter adjusting adaptive

control system or to formulate rapidly the preliminary design of a fixed para-

meter flight control system.
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SIMPLIFIED ANALYSIS OF FLEXIBLE

BOOSTER FLIGHT CONTROL SYSTEMS

by

Lee Gregor Hofmann and Allen Kezer

INTRODUCTION

Structural flexibility effects have been extremely important in the design

of flight control systems for large ballistic missiles and boosters. As the

size of the vehicles has increased, the lightly damped structural modes of

vibration have moved into the same frequency range that is desired for the

flight control system so that strong coupling effects have resulted. The nature

of these coupling effects has been such that it has been difficult to achieve

adequate stability margins for all flight conditions. The relatively low stability

margins have necessitated complex and detailed analysis of the systems to

insure that the margins do indeed exist and that uncertainties in the knowledge

of vehicle parameters will not lead to system instabilities.

In the process of the development of an adaptive control system to over-

come some of these obstacles, it was necessary to develop simplified analysis

techniques which would lead to a better understanding of the effects of parameters

upon the performance of the system. These simplified analysis techniques are

useful not only in the design of adaptive control systems but also in the prelim-

inary design of a basic control system to which the adaptive features may be

added if necessary.

One of the prime considerations in the design of the flight control systems

is the fact that the sensors which provide the means of closing the feedback

loops (gyros, accelerometers, etc) sense the local bending at. the sensor

station as well as the motion of the ideal rigid body. In some cases, a very



significant improvement can be made in the closed loop bending dynamics by

use of proper feedback of the bending information that is sensed by these instru-

ments. This can result in a very significant reduction in the bending motion

and hence in the dynamic loads which are applied to the structure.

In any feedback control system, the feedback signal must have the proper

phase and amplitude. Usual root locus or frequency response methods of analy-

sis which are used to insure the existance of the proper phase and amplitude

require that the open loop poles and zeros of the system transfer function be

known in factored form. This paper employs a relatively simple and systematic

method of obtaining the factored open loop transfer function for a booster con-

trol system using simplified equations of motion and a root locus factorization

technique.

The development illustrates the application of this technique to the case

of a system which controls the orientation of the undeflected centerline of the

booster. In this system the feedback quantities are angular displacement and

rate of angular displacement with respect to inertial space of the flexed center-

line of the booster at one or more locations along the centerline.

The feedback of other quantities, such as normal acceleration, may be

included in the control system by developing an applicable set of equations

using the method of derivation employed in this paper. The simplifying

assumptions which make this systematic analysis possible do not cause any

significant loss in accuracy in the description of the physical booster, and

because of the dynamic similarity of the booster modes of motion, the analy-

sis is effective in reducing the apparent complexity of the problem. The

effects of the important booster characteristics and design parameters upon

system performance are quite evident, and parametric studies are greatly

facilitated by this particular method of obtaining the open loop relating function.

ANALYSIS OF THE OPEN LOOP PERFORMANCE FUNCTION

OF THE FLIGHT CONTROL SYSTEM

In order to analyze the effects of parameter variations on the closed loop

performance of the booster flight control system, the open loop relating

function must be known in factored form. To proceed toward this end, a

mathematical description of the control system must be formulated from a

functional description of the system.
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Functional Description of Control System

A functional block diagram of an orientation flight control system is presented

in Fig. 1. This system utilizes feedback of angular orientation information as

sensed by rate and rate integrating gyros. In many cases, the orientation

measurement may be performed by the inertial measurement unit of the guidance

system instead of a separate rate integrating gyro. Angular orientation or

angular rate may be commanded to the system by suitable usage of the orien-

tation measuring instrument. The input and output variables of the system

are different for the different commands, but the loop dynamics and analysis

procedures are unaffected.

The rate and rate integrating gyros may be located at different stations

along the booster body. If necessary, the outputs of several rate (or rate inte-

grating) gyros may be summed in such a way that the rigid body component is

the same as that sensed by a single gyro, while the effective bending mode

slope "sensed" for each mode may be changed by suitable adjustment of the

contribution made by each gyro.

The introduction of compensation into the control loops provides several

additional system variables which in turn make it possible to use different

approaches for stabilizing the different modes considered in the design. For

generality, compensation units are placed at three locations in the two control

loops of Fig. 1.

In this study, it is assumed that a gimballed nozzle is used for the thrust

vector control and that a hydraulic actuator is used to provide the required

nozzle deflection. For clarity, a first order lag approximation is used for

the hydraulic actuator and a second order system for the nozzle dynamics.

Accelerations of the nozzle gimbal point which produce reaction torques on the

nozzle and couple the rigid body and bending modes with the nozzle motion are

neglected, but may be included by mathematical operations which are similar

to those developed in this paper.

Mathematical Description of System Dynamics

The equations of motion which have been developed for the booster air-

frame are quite complex* and use of these complete equations is cumbersome.

To facilitate analysis and interpretation of parametric effects, the equations

may be simplified without any significant loss in accuracy. In Appendix A,

* See Appendix A
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the complete linearized equations have been simplified to a degree which permits

the relating function for the irg output of the Booster Dynamics functional block
of Fig. 1 to be represented by the block diagram of Fig. 2 when the (rg) notation

is substituted in the subparenthesis of 9( ) and ( ). The relating function

for the .ig output may be represented by the same bibck diagram using the (ig)

notation. This diagram in Fig. 2 is a general representation of the booster

equations from a nozzle deflection (6) to the motion sensed by a single gyro
(9( )).

The relating function paths of the rate damping and orientation control

loops can be combined into one path for each booster mode. The mathematical

block diagram of the resulting open loop relating function is shown in Fig. 3.

The opening in the control loops depicted in Fig. 3 corresponds to an opening

ahead of the sensitivity adjustment, Soc, in the forward portion of the control

loops of Fig. 1.

The parallel paths shown in Figs. 2 and 3 result from the fact that the gyros

sense a component of angular motion due to the local slope of each bending mode

as well as the angular motion of the rigid body. The factor which represents

the local slope of each bending mode (N I) appears as a separate sensitivity

factor in the mathematical block diagrams of Figs. 2 and 3. The slope of the

ith bending mode at the integrating gyro station is denoted by Aigi and at the

rate gyro station by A In Fig. 3 the parallel paths also contain the compen-rgi
sation elements which are unique to either the rate damping loop or the orientation

control loop.

The open loop performance function of the booster control system may be

written by inspection of Fig. 3:
(PF)b©e :(RF)bC[ ;Sc-] Soc (PF)2[ ; ] (PF) n C €8]

op'n
loop

The parallel paths of the open loop relating function which compose

(RF) b 16: 6", and represent the components of the control system feedback

signal due to nozzle deflection, must be reduced to a single path. Algebraic

reduction of the expressions for these parallel paths to an expression for a

single path results in a ratio of polynomials with a factored denominator and
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an unfactored numerator. The numerator polynomial must be factored before

proceeding with an analysis of the closed loop control system.

The development of the expressions for obtaining the factors of the

numerator polynomial is based on the algebraic manipulation of the sum of

two polynomials into a familiar unity feedback expression to which root locus

factoring techniques may be applied.

For example:

qin S()+ qout

SD(p) C)÷

A, B. C, D, qtn, and qout are functions of p; A, B, C, and D are factored

polynomials in p.

%out A=.AD +CB
qfn B D BD

5{AD [1 +.]

(rBC 1 -.
SAD 1

BD +BC S C
ADf

If A, B, C, and D are factored polynomials, the quantity of the inner brackets

[ I may be factored by a root locus where the "open loop" poles are the factors

of A and D and the "open loop" zeros are the factors of B and C. Because of the

minus unity exponent on the term in the outer bracket I I j the locus of the

poles of the root locus factorization becomes a locus o the numerator zeros

of the qout/qin transfer function.

8



The determination of the zeros of the relating function of the open loop

booster control system shown in Fig. 3 involves the successive application

of this technique as the parallel path for each bending mode is added to the

analysis. The equations for the determination of the zeros are presented in

Equation Summary 1 for the case in which the compensation units c1 and c3

have transfer functions of unity. * The expressions for including one bending

mode in parallel with the rigid body mode are given by equations 1-3(a), (b),

(c), and 1-4.

The extension of this result to allow the addition of the effects of a

bending mode when an arbitrary number of bending modes have already been

included in parallel with the rigid body mode is given by Eqs. 1-7(a), (b), (c),

and 1-8.

*The results of a similar development for a more general case in which the
compensation units cl and c 2 do not have performance functions of unity is pre-

sented in Appendix B. However, the results there are mainly of academic interest,
since the effects of these compensation unit dynamics may be accurately repre-
sented by simpler means. The simpler method involves defining and calculating
effective values of the local bending mode slopes "sensed" by the rate and inte-
grating gyros. These effective values of the slopes are equivalent, in the system
performance sense, to the combination of the actual values of the local bending
mode slopes sensed by the gyros and the effects of the compensation.

9



Assuming that the performance functions of the 01 and 03 compensation units are equal to unity, the fol-

lowing expression for (RF)b [ 8; Sc] can be developed from the mathematical block diagram of Fig. 3 and the

relating functions listed in Fig. 2

Sh[8;•](l + P. )
(RF)b(8;c] - 2 9 (1 + P(SR)rd) +

p2

kigl Sb(8;ql1 (I + L-2

(1 +2*_•lp+ ~I p •+p (SR)rd lg-'

2 2,

The first term in the above expression is the contribution of the rigid body motion to the 8€. signal; the

second term is the contribution of the 1st mode motion. Placing the above expression over a commas demom-

inator gives

Sb + [( 1 + p2 + p2 + P +

~2 (+ 2'1 +a... 1,, I_ I
(1-2)

p2 ),igl Sbs;ql] (I 2 ++ )rd P

Introducing a simplifying notation

Sb C;AI (p) +K 1 B1 (P)]

p 2  1 il4.- p 4 !.p

where

( .3.A, + 11rc. p +|. P2 + p2 1 + (SR)rd P)(-•)

Equation Summary 1 (Page I of 4)

Development of the Flexible Booster Relating Function -

Without Compensation [(PF),, =(PF)63 =1]
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B, = P2 1 + - 1)• ( 1 (SR ), "IV, (1 -3 b)

Sb[S (1]

In Eqs.(l-2) and (1-3) the five zeros of the relating function are contained in the bracketed term. One zero

results from the race gyro "differentation"; two from placing the polynomials over a common denominator, and

two "tail-wags-dog" zeros from the inertial reactions of the gimballed nozzle. Care must be taken not to

confuse the "tail-wags-dog" zero of the booster which is a factor of (RF)b j S;8€ ] with the "tail-wags-dog"

zero of the ith mode which is a factor of (RF)b[ 8;qi]

By rearranging the bracketed term of Eq. (1-3), the polynomial summation AI + K B1 , may be put into the

familiar unity feedback form, multiplied by a factored polynomial, 1/K1 B1 .

5 b;11

( b 0 1 1 1 1-
P2 +4,P + 2. ) 1 + i K 1B

The quantity in the inner brackets of Eq. (1-4) is the unity feedback expression which is readily factored

by root locus techniques.

The final factored form of the relating function is obtained by completing the other algebraic operations

that are indicated in Eq. (1-4); noting especially the minus unity exponent of the outer bracketed term.

The effects of additional bending modes can be included in the relating function by similar operations.

In adding the second mode the equations become

/ 2

"'02 SbIS;q 2 ] W1 2

(RF)b[8;s ]Iforfirst n (RF)b [ ;1]2forfirst - '2 (1+P(SR)rd g2 ) ("-2a)

and socond odW 0 2 2  02
modes a2 2

Equation Summary I (Page 2 of 4)

Development of the Flexible Booster Relating Function -
Without Compensation [(PF)el-= (P1) ]
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Examination of the above equation suggests that it is possible to generalize it immediately to the case where

the nth mode is being added to the expression for the (n - 1) mode relating function. Additionally, it can be

seen that it is not. necessarily the mode n which must be added at this point since any of the other (n - 1) modes

might have been used in its place. Therefore, the mode added will be denoted j to indicate that the modes need

not be included in order according to their mode index.

The method for the calculation of the relating function which includes n bending modes when the relating

function which includes (n - 1) modes is known, is derived in the following operations.

Xjg Sfg~j](i+ .2. )
(RF)hi [s; f (RF)b([ S, r ) . (1 + p (SR)rd K-N (1-5b)fIo (n f (1 2 X

010 1

The first term in the above expression is the contribution of the rigid body motion and (n- 1) of the n bending

modes to the 8€ signal; the second term is the contribution of the jth mode motion.

Substituting the factored form of (RF)b [ ; ]for (n - 1) modesand placing the above expression over a

common denominator gives

(RF) bs ] Ir S [ 3g 2
]for. n n + ; 2|m odes p2 n + -- •. _ +

01 oi 2

the (2n + 1) zeros of 2•

(RF)b [s;s] forn. 1) modes) Ij P÷•jP" J +

(1-6)

_ *'i Sb(8;q4] p2 (i ) P C I ÷(SR)rd P) X

Equation Suimazy 1 (Page 3 of 4)

Development of the Flexible Booster Relating Function -
122



Introducing simplifying notation

(RF)b[(;.o] fE 01 C+" 2 AI (p)+ Ki Bi (p)(

modes p 2 1 (1(7)

where Al(p)=(I + I + p2 ) X

'9 i i , )

X [the (2n + 1) zeros of (RF)b[8;5"] for (n-i) modes] (1-7*)

S(1-7a)

Ell(p) = P2  (! + .) 1 + (SR), ý I +- + (1-7b)

X Xei. Sbh B;qi] (1-7 0
K1  Sb

Tle 2n + 1 zeros of Eqs. (1-6) and (1-7.) must be expressed in the forn ( + LtP + 4_ or (1+ rp).
Rearranging Eq. (1-7) iato the familiar unity feedback fonm gives -

(RF'b 
5h8b 1 KI- 1

mds p 2 j"71 I 1+K,.Ji KTi 1i "2

The order of the polynomials AI (p) and Bj (p) is (2n + 3) for n =2, 3, 4. The explanation of the origin of

the zeros is the same as before, but in addition, two zeros appear for each bending mode added.

Equation Summary 1 (Page 4 of 4)
Development of the Flexible Booster Relating Function -

Without Compesaltion [(PF),, = (PF)e3 1]
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Example Illustrating the Method of Applying the Simplified Analysis

The usefulness of this simplified analysis in qualitative applications cannot be

fully appreciated until one witnesses a demonstration of its power and simplicity

in an actual example. It is the experience of the authors and our associates that

the routine of formal operations indicated in equations 1-4 and 1-8 of Equation

Summary 1 are easily carried out to obtain the factors of the numerator polynomial

of (RF)b[ 6; 6c]" ; to wit:
'C

Problem: Find the factors of the numerator polynomial of (RF)b[ 6 ; 6 "] for a

case in which the first and second bending mode effects are included

in the analysis.

Situation: 1. The orientation and rate damping control loops contain the same

compensation which is lumped into the c 2 element of Fig. 1. The cI

and c3 compensation transfer functions are therefore equal to unity.

2. The damping of the bending modes is assumed to be negligible.

CI = C2 -"
3. The "tail-wags-dog" frequencies, wz0, W Zl, WZ2 of the rigid body,

first bending, and second bending mode, respectively, are related

by the following inequality. *
AZ0 > >

4. The first and second bending mode frequencies are such that
Wl1a < Wz2 *

* It can be shown that the "tail-wags-dog" frequencies are almost invariably
related to one another bth above inequality. The greatest of these frequencies

is slightly less than T . Differences between the frequencies in the

inequality are small.

An interesting fact is that the "tail-wags-dog" frequencies are relatively
constant during a constant thrust flight profile as opposed to the bending mode
frequencies which may increase over 100% during the flight profile.

** Note that wifi is the undamped natural frequency of the ith bending mode

when the rocket engine is thrusting; this is also the resonant frequency when the
damping of the ith mode is negligible.

14



and

w2 Ia2 >z

The first bending mode resonant frequency is
less than the lowest "tail-wags-dog" frequency,
and the second bending mode frequency is greater

than the highest "tail-wags-dog" frequency.

5. The sign of the ratio of the bending mode slope

sensed by the gyros at their respective stations

to the bending mode displacement at the nozzle

gimbal station is given for each mode by:

a) Xj.gI/Obg, anrgd/qb1  X 9ig2 /0bg 2 are negative

b) X rg2/46 2 is positive

c) X igl/4 1 =, ,rgl /"gl

Qualitative Solution:

The zeros of (RF)b( 6; 6, including the first bending mode

in parallel with the rigid body mode are determined by one

root locus operation. The effects of the second bending

mode in parallel with the combination of the rigid body and
first bending mode are added by a second root locus oper-

ation. The steps of the qualitative solution of the problem

are outlined below. These correspond to the mathematical

operations indicated in Eqs. 1-4 and 1-8 of Equation Sum-

mary 1. Figures 4 (a-d) are graphical representations of

these steps.

1. Since (PF) = (PF) 1, the equations of Equation

Summary 1 are applicable to this problem. The first
bending mode will be added first. Plot the open loop

roots of the term in the inner brackets of Eq. 1-4,

BI(p) / AI(p) on the complex plane. The poles are

the roots from Eq. 1-3(a) and the zeros are the roots

from Eq. 1-3(b). Since Atg1 /0 1 MArgl / 0gl

AI(p) and B 1(p) contain common factors of [ l+p(SR)rd]

which divide out.

15



CANCELLATIONS OCCUR
IN STEP 3

THIS POLE IS
ADDED IN STEP 3

S2 ZEROS AT ORIGIN

-R)d

Fig. 4(c). Root locus determination of the flexible booster relating function - steps 1 through 3.

RESULT IS (RF)b(8;,,a1 INCLUDING THE FIRST BENDING MODE ONLY

The possles lecetlees of the zes of (RF)b• 8#3

fer differnmt menltudes of the "epen lee glon" of r w0

the reef locus eee'eleni we Indlceted by the doeted

lines In Fig. 4(b).

CHARACTERISTIC POLES
ADDED IN STEP S

2 POLES AT ORIGIN

(SR)rd

Fig. 4(b). Root locus determination of the flexible booster relating function - steps 4 and 5.
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2. Find the roots of{K (Bl /A,) 1+K (Bl / A1,)1
by the root locus technique. Care must be taken

to choose the proper angle criterion for the

locus. The locus criterion for this part of the

problem is 1800. The root locus is easily

sketched by inspection since all of the open

loop roots lie on the imaginary axis in the "p"

plane. Note that increasing the magnitude of

Xrg = 'XigI corresponds to increasing the magni-

tude of the open loop gain and therefore causes

the closed loop poles to move away from the

open loop poles along the imaginary axis toward

the zeros.

3. After finding the roots of {KI (BI/AI) /[I+KI(BI/AI) I).
multiply through by the remaining term in the

outer brackets, 1 /KIBI. Cancellations with all

open loop zeros occur, and the sensitivity of the

outer bracketed term becomes unity.

4. Invert the bracketed function. The minus unity

exponent on the brackets corresponds to changing

the poles remaining after step 3 to zeros. These

zeros are the zeros or factors of the numerator

of the relating function (RF)b[ 6; 61111including the

first bending mode. c

5. Multiply the function resulting from step 4 by the

sensitivity and characteristic poles outside of the

outer bracketed function (add these characteristic

poles to the root locus plot). The resulting plot

is now (RF)brI 6; 6"i including the first bending mode.

To add the effects of the second mode, apply the operations of Eq. 1-8

for n=j =2.

17



I
ITO+j..

00 LOCUS TL2 POSITI

W2rg YE)

W ez2

FR°M -FROM +"

Fig. 4(c). Root locus determinotion of the flexible booster relating function - steps 6 thvu S.

RESULT IS (RF)b[8Je;1 INCLUDING THE FIRST AND SECOND BENDING MODES&

T h e p es ib i e l o c alti n s o f O h w a ce s o f ( R F ) b [ 4
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S fefoet locus operatioe we Indicated by #4 dotted
It 0_ 12 lines In Fig. 4(d).

01 1 WIN drd

0

= ! /e 1 -1 -A-g2

(SR~rd (SR)rd OR)rdA,

Fig. 4(d). Root locus determination of the flexible booster relating function - steps 9 and 10.
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6. Proceed as in step 1 this time plotting B 2 /A 2

as the open loop roots of the term in the inner

brackets. Note in Eq. 1-7(a) that the roots

of A2 are the 2n+l(n-2) poles remaining after

the operations of step 3 plus the two roots

which are the characteristic of the bending

mode being added (second bending mode).
In Eq. 1-7(b), B 2 has roots as follows: 2at

the origin, 2 at the "tail-wags-dog" fre-

quency of the bending mode being added,
2n-2(n=2) corresponding to the characteristic

roots of the bending modes already included,

and one from the effect of different rate gyro

and rate integrating gyro pickups of the

second bending mode slope component of

angular deflection. Since X. r
ig 2  rg 2 '

I + P(SRjrd Xrg92 ig 2 1 of B2 and [1 + p(SR)rdl

of A2 do not divide out as did the corresponding
factors for the first bending mode. Steps 7

through 10 are similar to steps 2 through 5.

In step 10, however, an additional pair of char-

acteristic poles appear outside of the outer i

bracketed term. These are the characteristic
poles of the second bending mode. The

resulting plot is now (RF)br 6 ; 6 "1 including
c

the effects of the first and second bending modes.

Following are several important observations to note as a consequence
of this example; some are directly obvious, the others result from a

bit of qualitative experimentation with the parameters of the system.

1. The open loop singularities used in a locus operation are either

the singularities of the relating functions for the booster modes

listed in Fig. 2, or the roots of the numerator polynomial of

(RF)b[ 6; 6 "1 which were found as a result of the previous locus
C"

operation.
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2. The form of the root locus operation is such that the zeros due

to the inclusion of the ith bending mode proceed from the open

loop pole locations of the ith bending mode with increasing mag-
.th

nitude of the i mode slope sensed by the rate gyro, A rg. The

parameter Argi is a design variable because its value is deter-

mined by the placement of the rate gyro along the booster body.

3. The direction in which the zeros due to the inclusion of the ith

mode proceed from the ith mode pole locations is determined

by the sign of Arg t the the ith bending moderg. .th t
resonant frequency to the i mode "tail-wags-dog" frequency,*

and the value of A.ig" / A rgi. ** The parameter Ag.gi is a design

variable because its value is determined by the placement of

the rate integrating gyro along the booster body.

4. If A = Xigi = AG. for all the modes included in the analysis, onerg1 ig i

zero of (RF)b[ 6.6" occurs on the real axis at -1/(SR) rd" The

rest of the zeros occur in conjugate imaginary pairs, in real

pairs symmetric about the origin, or in complex conjugate

foursomes which are symmetric about the imaginary axis.

5. If A = igi = AG. for all the modes included in the analysis, therg ig i

phase of (RF)bI 6;6c 1 / ( 1 +p(SR)rd] at each resonant frequency

can be easily calculated knowing only the parameters of the modes

and the mode slope sensed by the gyros, A G.. In a similar

fashion the phase or range of phase at each of the zeros is easily

calculated even though the positions of the zeros are only quanta-

tively known.

*i. e. Wi ai less than or greater than w.

**Other parameters assumed constant.
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The assumption that A rgi = A igi = A Gi is often useful to make even if

the statement is not strictly true because of the substantial "computational"

simplification which is introduced. This assumption does not effect the

position of the zeros relative to the poles in the direction of the imaginary

coordinate. The parameter ratio .ig i / Argi controls the lateral location,

or real coordinate of the zeros with respect to the poles. This control is

usually rather weak except when 1 / (SR) rd tends to zero and /or Xigi / XArgi,

tends to be large with respect to unity. When the control of .igi / Argi is

weak, its effect does not alter the basic nature of the problem, and therefore

the assumption is useful when only qualitative understanding of a problem is

required.

The statement X = x. is strictly true when both rate and rate inte-rgi tg

grating gyros are placed at the same station along the booster body.

A figure which emphasizes points 4 and 5 above, follows. This will show

the zero-pole configurations that (RF)b[ 6;.,"] may assume for all possible
c

combinations of AGi /lg ' greater or less than zero and w#i/wiJ greater or

less than unity* when one bending mode is included in the analysis. Four

*If the mode slope parameters Ar and Xig or XG are divided by the ithrgi g. G

mode displacement at the gimbal station gi. the resul~ing ratios are independent

of the manner in which the mode shapes are normalized. It can be shown that
the sign of this ratio indicates the phase of the ith, mode component of mot',on
sensed by the gyro relative to the phase of the force being applied to the itmn mode.

The expression wiNi greater or less than o z can be non-dimensionalized

by dividing through by w zi to produce a neater mathematical statement. This

ratio indicates the dominance of the transverse component of thrust acting on
the ith mode over the transverse component of the inertial reaction force due
to giballing the nozzle at the resonant frequency of the ith mode when

(7i i / w <1. When(w10i4a / w )> 1 this ratio indicates that the transverse

inertial Reaction force is dominant over the transvyerse component of thrust acting
on the it mode at the resonant frequency of the itl mode. Note that the transverse
inertial reaction force on the ith mode is 1800 out of phase with the transverse
component of the thrust acting on the ith mode when the nozzle is gimballed at an
arbitrary frequency.
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basic combinations are possible; these are shown in Fig. 5(a-d). Alternate

features which can arise in cases 3 and 4 of Figs. 5(a-d) are shown if Figs.

5(e-g). The method by which these figures were constructed exactly parallels

steps 1 through 5 of the previous example which showed the method for obtaining

the zeros of (RF)b[ '; 6"1']

Table 1 shows the phase or range of phase at each singularity of

(RF)b[ 6;6"1 / [I+p(SR) rd) for the different cases based on observations of
c

Fig. 5(a-g).

The areas of the complex plane in which the zeros are found for the dif-

ferent cases are compiled in Table 2. This table is also based on observations

of Fig. 5(a-g).

The significance of tables such as 1 and 2 greatly increases when they are

constructed for cases which include more than one bending mode in the analysis.

When several modes are considered, it will be apparent to the control system

designer that this classification procedure is helpful in keeping track of such

things as the possible pole-zero configurations and phase-at-the-singularities

of (RF) b[ 6;6"]"
C

When all possible combinations of the relative values of XGi/0gi to zero

and of w•'4i-z to unity for all the modes included in an analysis are quali-

tatively investigated, patterns of zero locations relative to the poles are evident.

These patterns, which are uniquely specified in terms of the relative values of

these parameters, can be translated into tables similar to I and 2. Subsequent

use of the tables requires knowledge of AGi / 0gi and w4Xii / w•zi for the modes

of the particular booster of interest, but does not require even a qualitative

factorization of (RF)bI 6; 6 " since its approximate pole-zero configuration
C

can be reconstituted from the tables once they have been constructed.

In the next section it is shown how particular patterns of pole-zero relation-

ships of the booster relating function directly influence the choice of the c 2 com-

pensation unit for the control system and the closed loop performance of the booster

flight control system. Hence reference to these tables aids in making a quick

identification of those areas in which the design of a particular booster flight
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- 0 - 03

0 2 e0 2e

(SR),d(SR),d

a. Case I (KGI/46 9 < 0, w ra",/-i < i) b. Case 2 (KG1 /Ogg > 0, co, ~j /i~w2 < 1)

- Oil* -

2 2

c. Case 3 XG 0. 09 ii<40'/'1 > 1)d. Case 4 ( XGI/469i > 0. W, 011wI

Fig. 5(a-d). Examples illustrating the different pole-zero configurations of(R~[;,.
(including one bending mode, and assuming ho Xg =j:)
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INCREASING MAGNITUDE OF "OPEN LOOP GAIN," ki, OF THE ROOT LOCUS OPERATION

.. Possible zero locations for Case 3 of Fig. 6(c).

2 2• .. o • I O

-1 -1
(SR),d (SR)rd

f. AvwarlotnofCua.3 (O• V•i&,o) ,. Avalario nofCas.4

Fig. 5(e,f,g). -Examples illustrating the different pole-zero configurations of (RF)b [s;h.]

(including one bending mode, and assuming h. 0I = =.)
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Table 1. Tabulation of the phase (or range of phase) of (RF)b[ 8s;8]/ 1/1 + p (SR)rd] evaluated at its
singularities in the upper half of the complex plane. This is for the cases of'

(RF)b[ 8;] illustrated in Fig. 5 O-g.

Conditions Phasie (ingui dogtiesof (oRFf[4 ]E/ [1 + p(SR)LP]
CaM (in deposs of I82)

Reliatve Vsu of Reltive Vdue of RBody Poles of the Hiui Fmqcy Lower FMqimcy
N iP01/a ith Bending Mode or RHP Zo of or tP Zoms

< I < 0 00 900 900 900

9062 <1 >0 00 270e or 270P
o" and IeSe

90%, or 270, of
3 1 < 0 06 270! 180°to 00, or 0 to4-80, or

270d 900

90
4 >1 >0 00 900 or 900

oea.d 1d

RH a We hod b oflme uex plme
UHP w left Mud hif of gi cosplex plum

Table 2. Tabulation of the possible locations of the zeros of (RF)b [ 8; / [ 1 + p (SR)rd]

in the upper half of the complex plane for the cases illustrated in Fig. 5 a-g.

LOCATION OF THE ZEROS ASSOCIATED LOCATION OF THE "TAIL-WAGS.DOG"
CASE INN THE ith MODE ZEROS OF THE BOOSTER

I On the imaginary axis between On the imaginary axis between
Wc•iA and 0 W zo and owz

2 On the imaginary axis between On the imaginary axis between
W2zi and Ioi vi W Zo and mior on the real axis

3 Both zeros are found on the imaginary axis between coi "ii and wZo; or
One zero occurs in the RHP and the other occurs in the LHP between

the greater of oi ,i/I and wZo, and 0; or

Both zeros are found on the imaginary axis between wo2z and 0.

4 On the imaginary axis between On the imaginary axis between
Coi 'Ai and wo, Czo and 5aor on the real axis

RHP - dht han hall of te complex plug
LHP let and hitdf of the comple plut
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control system may be troublesome and those areas where design will be

straight forward.

RELATION OF CONTROL SYSTEM ANALYSIS TO CONTROL SYSTEM DESIGN

The design process consists of matching the sign of Argi /gi with a

compensation which provides the proper phasing of the ith mode feedback

signal to produce a maximum of artificial phase stabilization for the ith

mode. Alternatively, the compensation may provide sufficient attenuation

of the ith mode feedback signal to insure stability of the mode regardless of

the sign of the ith bending mode pickup and the phase shifts due to the remainder

of the system. This process is carried out for all the modes which are included

in the analysis. A combination of the above compensation methods may be

employed for stabilization of a mode with success; however, such a system

requires extensive study to insure the preservation of specified stability

margins of both phase and gain.

As previously shown the locations of the zeros of the open loop booster

relating function are influenced by the relative values of wi 4i / wz i to unity

and A rgi / •gi to zero. The effect of some of these possible locations on

the system dynamics and general design procedure is illustrated by a simple

example considering the rigid booster and one bending mode. The nozzle and

actuator dynamics are represented as a single first order lag, this assumes

that the second order dynamics associated with the nozzle-actuator linkage

are negligible. The rate and rate integrating gyros are located at the same

station along the booster body. ( XG -=.rgI =igI) The performance functions

of c 1 and c 3 compensation elements are equal to unity. The dynamics of the

forward path compensation, (PF) c, are used to phase compensate the system

used in this example.

The performance function for the closed loop control system can be devel-

oped from Figs. 1 and 3. This is given below.
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SO* {(PF)f[ts;&] (PF)c 2 }
(PF)bc [Oc;] &I I ,1 +S 0c {(PF)n[s.8c; (RF)b[8;S;] (PF)c 2 }

The characteristic roots of the booster flight control system are the poles of
(PF) These may be determined from the above equation using

bcs.Oc; ;61
root locus techniques.

If the departure and arrival angles for this root locus are calculated for
a case without compensations (PSC = 1, the approximate phase angle requiredc 2

of (PF) at the bending frequency to maximize the negative real coordinate of

the closed loop bending poles becomes apparent. A suitable type of compensation
may then be chosen to provide the needed phase shift at the bending frequency
without causing the rigid body response to change by any substantial amount.

Figure 6 presents sketches of the root locus for three cases of the possible
locations of the zeros of (RF)bI 6; 6"1 with and without second order low pass

c
compensation to achieve phase shift at the bending frequency. It is obvious
that Figs. 6(a) , (d), and (e) represent cases of correctly compensated

systems, and that (b) , (c) and (f) represent cases of incorrectly compensated
systems.

It is quite possible for the booster flight control system to change from
one of the situations illustrated in Fig. 6 to another during the flight of a typical
booster. For instance:

1. If the bending mode resonant frequency becomes greater than

the "tail-wags-dog" frequency of the mode during the booster

see Fig. 6(a), (c), and (e)
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• . 0, Ol / 111,,< 1, A,,,/01, < 0 b. W,,/'G'*,, <' 1,, 4,, <0
NO COMPENSATION WITH COMPENSATION

S"2* NOTE: A,19 •Ar1

i. -, +

COMPENSATION

SERVO SE

1. A,/I ' < 0 > •0. •<1o ,., 21,, A,1 , o 0

No COMPENSATION WITH COMPENSATION

-- 20" " Zv "- -

COMPENNSATIMON' z

~e p

SERVO SERVO

28-

NO COMPENSATION WITH COMPENSATION

(03,

SERVO SERVO a

Fig. 6 (o-f). Root locus diagramns for booster flight control systems including: booster "ad
one bonding mode (severel types) andl centrol system with and without compensation

(PF) bse, V ] P (RF)b[E1S; q versus See forea fixed valueof f(SR),i.
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0

flightM( w1 l <17/ w I changes to li/ zI >9) the system

changes from the situation illustrated in Fig. 6(d) to that in Fig.

6(f) .

2. If the rate gyro is located such that the mode slope sensed by the

gyro changes sign during the booster flight** (X /rgI /9<0 changes

to ArgI / g9 > 0) the system changes from the situation illustrated

in Fig. 6(a) to that in Fig. 6(c).

If such a change of booster parameters does occur, it is necessary to make

corresponding changes in the flight control system parameters to preserve

the desired performance.

A case considering additional bending modes may be handled in a manner

similar to the example. However, this would impose additional constraints

upon the choice of (PF) . In the case of modes being phase stabilized, the
approximate phase of (PF)c2 at the bending mode resonant frequencies would

be specified by the choices of the signs for AG /*g and by the requirement

that the negative real coordinate for each of the closed loop bending poles be

increased. In the case of modes being amplitude stabilized, the maximum

allowable gain of (PF) at the bending mode resonant irequencies would be

specified.

SUMMARY

This paper has advanced a simplified concept of analysis for a flexible

booster flight control system. The main concern has been the development of

a simplified, factored, open loop relating function for the booster control sys-

tem. This provides the key to the evaluation of systenm performance. It was

shown in the closing section that once this relating function has been evaluated,

the closed loop system performance can be assessed using straightforward and

familiar techniques.

*see first footnote on page 14

**Changes in the sign of a mode slope sensed by a gyro occur due to the wide
variation of the booster mass distribution during the flight profile. This is
very likely to occur when an attempt is made to place a gyro near an antinode
of a particular mode.
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This analysis is unique in that it enables this very complicated dynamics

problem to be discussed and interpreted intelligently in qualitative terms. An

engineer thoroughly familiar with this method can, on a moments notice, be

prepared to discuss the control problems involved in the preliminary design

of a particular booster. The knowledge required for discussion involves only

well known quantities such as thrust, moment of inertia, nozzle mass, rough

estimates of the bending mode frequencies, mode shapes, and slopes for the

particular booster.

There are a host of points concerning the booster flight control system

problem which are not suitable for presentation here with the fundamental

principles, but which may be adequately treated by the methods of this analy-

sis. Among these are the effects of: elements of the c1 compensation unit in

the rate damping loop which do not appear in the orientation control loop, ele-

ments of the c3 compensation unit in the orientation control loop which do not

appear in the rate damping loop, aerodynamics, propellant sloshing modes,

and the couplings of bending and sloshing modes with the actuator-nozzle

motion.
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APPENDIX A

APPROXIMATE LINEARIZED EQUATIONS OF MOTION

IN A SINGLE PLANE FOR A FLEXIBLE BOOSTER

The perturbation equations of motion of the booster in a single plane

used as the basis of this study are essentially those developed in Reference 2.

These have been restated in a slightly different coordinate system and nota-

tion (standard aircraft body axis coordinate system) in Equation Summary A-i.

The coordinate system definition and the definition of important system phys-

ical constants are shown in Fig. A-I.

These equations can be further simplified while still retaining the essen-

tial dynamic features resulting from the structural degrees of freedom of the

physical system.

The simplifying assumptions are as follows:

1. Aerodynamics are neglected.

2. Cross couplings among the bending modes and couplings of

the bending modes with the rigid body modes due to engine

thrust are negligible.

3. Couplings of the bending modes with the nozzle dynamics

are neglected.

The advantages of using these assumptions for simplifying the equations

of motion are as follows:

1. The rigid body mode and the individual bending modes of

the booster are decoupled from one another in the approx-

imate equations of motion. This isolates the important

bending effects.

2. The relations between 6 and the 4 a, az, and qi variables

(or their time derivatives) become simple second order dif-

ferential equations. The approximate response of any of

these variables may be examined by cascading a simple

relating function with that describing 6 for the closed loop
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booster flight control system. The low frequency response

of these variables is well approximated only when the dynamic

pressure is low. The high frequency response (the major

concern of this report) is unaffected by neglecting the aero-

dynamics.

3. When the nozzle dynamics are considered separately from the

booster body motion, the effects of inertial reaction torques

which couple the rigid body and bending modes with the nozzle

dynamics may be described by a feedback of each of these

simple, second order, uncoupled modes around the second

order nozzle dynamics.

The introduction of these assumptions after elimination of the intermediate

variables v, w, ug, and V/g by substitution reduces the equations of motion

to those of Equation Summary A-2.
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EQUATION SUMMARY A-I

FLEXIBLE BOOSTER EQUATIONS OF MOTION

Normal force equation

MCI = (Cn qS]a- (mg g s +] +[(Cna + CD) qS]w - [T] IT-[] a (Al-I)

Components of normal acceleration

01 - [VP + a.] a - [Vp]G (AI-2)

External moment equation

[Ip 2 ] e. -[Co. Jp qS1], + [CD qSJv - [CnaLp qS]w + [T]ug-[T is) 0 - ITEi]a

Deflection of center line due to nozzle deflection

[m~v - -[Un me] 8 (AI-4)

Rotation of center line due to nozzle deflection

(11w - -[1118 (A1-5)

Deflection at the engine gimbal point

U9 - [11V÷ +Uo gw + (.09 1 q, + [0 92 ]q 2 + . + [.0i1q, (AI-6)

Slope at the engine gimbal point

0,g - [11w - [Atgljql - [(A92]q2 -. .... Xglqi (AI-7)

Ith bending mode generalized coordinate

[mp 2 + 2m i wi1p + m2]qi " -[(T + CD qS) Vgiv - [T010•gl ] - [mn fi p2 + T qsgi Is

(Al-8)
Nozzle moment equation

[In p2 + 2 In 4n On P + In 06213 - ([n In]a8 - [inmn]aO "[IE p2 + in mn g COs 16e

+ [" + CI qS] v - [in mn p2] u5 - [In p2 + (mn 4n/m) (T + CO qS)]j # (AI-9)
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Motion sensed by the ( ) gyro

(( ) - 0p] +(p]w--[pA( )p]q

(AI-10)

- [p])- Y[pA( )]q,

NOTES: These equations are modified from those of Ref. 2 by a change in the definition of the
coordinate system and a change in the number of nozzles swiveled in a single plane.
The effect of a distributed aerodynamic normal force on the bending has been neglected.
Fuel sloshing effects have been neglected.
Ingeneral, Cna and CD arc negative.
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CENTER LINE OF RIGID BOOSTER
WITH NOZZLE DEFLECTED

LOCAL VERTICAL BOOSTER UNDEPLECTED
CENTER LINE

NOZZLE LOCKEDx
TANGENT TO

* REFERENCE TRAJECTORY

qc

BOOSTER CENTER LINE

C.G. OF TOTALBOSE

NOZZLE ~* NOZZLE GIMBAL POINT ARDNMCNRA OC

4--mý .(C,. qS].

AERODYNAMIC CENTER
G Ad tpOP PRESSURE

Fig. A-1. Coordinate system for analysis of the flexible booster.
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EQUATION SUMMARY A-2

SIMPLIFIED FLEXIBLE BOOSTER EQUATIONS OF MOTION

Normal force equation

[miNo - -[mgCosA]e- [T (I - (A2-1)

Components of normal acceleration

o- (Vp + x)] a - [Vp] 0 (A2-2)

External moment equation

(I~ p2] [Tg (I + / n)]6 (A2-3)

Generalized coordinate of the ith bending mode

[m (p2 + 2 Ci wii p + (,2) - Tog, Agj] q, -

Tf Amnt T.01 I- 14 -(A2-4)

[T g -m7 - T, I ) ! mnil]

Nozzle moment equation

mn in

[1(p2+2_4n n P+ w Tt (I m ) ' E +

fM2 (2 I2\ (A2-5)
-P2 I-.+ [I -

Motion sensed by the ( ) gyro

e.(A2-6)L[p 
3( q
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APPENDIX B
OBTAINING THE FLEXIBLE BOOSTER RELATING

FUNCTION WHICH INCLUDES COMPENSATION

The method used in Equation Summary I to develop the relating function

(RF)b[ 6; 6 has been extended to include different compensation elements in

each of the gyro signal paths. The results are summarized in Equation Sum-

mary B- 1.

The compensation usea in each gyro path is required to be in factored
form and the numerator and denominator orders must be equal. If the number
of finite poles should exceed the number of finite zeros in the actual compen-

sation being investigated, additional zeros must be carried at infinity to equal-
ize the numerator and denominator orders. The rate path compensation is

given as (PF)c =N (p)/DI(p), where the order of N1 and D1 is pU; and the rate

integrating path compensation is given as (PF) 3= N 3 (p)/D 3 (p), where the

order of N3 and D 3 is pV. The number of zeros associated with (RF)b[ 6; 6]

when written as a rational polynomial is (2n + u + v + 1 + 2). Some of these
zeros may occur at infinity as previously mentioned. The (On + u + v) zeros

result from placing the polynomials over a common denominator; two "tail-
wags-dog" zeros from the inertial reactions of the gimballed nozzle; and one

zero from the rate gyro "differentiation". In addition it is required that

NI(0)/D 1 (0) = N3 (0) /D 3 (0) =1.

This additional generalization increases the complexity of the expression

for (RF)b[ 6; 6 "] quite substantially because of factorizations of (N3 D1 + [ const. ]
c-

pNID 3 ) which must be performed for each mode included in the analysis. (See

Eqs. BI-1, B1-2 and the associated auxiliary equations of Equation Summary

B-1.)
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The equations for (RF) b[8; 8c-I with (PF) c 1 4 1 4 (PF) c3 are presented below

without derivation. The method of derivation is essentially similar to that of Equation

Summary 1.

The relating function including the 1st bending mode in parallel with the rigid body is

(RF)b[8; 8c'1 Sb [8; 61 A,(B1-1

p2 D1 D3 (1 =1•- + +L)

where

A1(p) - (N3 D1 + p (SR)rd N1 D3) (1 2 C P + 12

01 *1¶ iJ ca W0

ar1  2~e

BliP) A p2  W2PSR)rd D) (

- kiln Sb[8; qj I]BI1
K = Sb[8; A1

Equation Summary B-I (Page I of 2)

Equations for the Flexible Booster Relating

Function Which Includes Compensation
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The relating function for n bending modes can be obtained by performing the following

operations on the relating function which includes (n-i) beading modes (n - 2, 3, ... ).

The effects of the ith bending mode will be added.

Sb[8; g] [f I KI-(RF)b[8;8,-]"p DD •1+-' p÷ +' L2 + Kj•,
0 (BI-22

where

{ the(2n+u+v+1) zerosof + 21 p2  (
A1 (p) = (RF)b (8; 8c for (n-i) bending modes W; (B-)

Bj(p) - p2 N3 D, + p (SR)rd g- -N. D23)

(BI-2b)

K. -igi Sb[8; qj I (BI-2c)
KI - Sb[8;9 l

The2n + u + v + 1 zerosof Eq.(Bl-2a)must beexpressed in the form (I+.L p.+ !I or
(1 + -rp). 

W W

Equation Summary B-1 (Page 2 of 2)

Equations for the Flexible Booster Relating
Function Which Includes Compensation
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GLOSSARY

SYMBOLS

CD - aerodynamic drag coefficient, CD - q

CNa - aerodynamic normal force coefficient, CNM - /

D - aerodynamic drag force

I - total moment of inertia of booster about the center of mass

'E - In+rMn In to

in = moment of inertia of nozzle about gimbal point

Ki - non-dimensional "open loop gain" used in the root locus factorization of the numerator
of (RF)b [ S;S€ ] when the effects of the ith bending mode are being added.

N - aerodynamic normal force

(PF)n[qin; qout] - performance function of component n, relating the measurable output, qout, to the
measurable input, qin

(RF)n (qin; cout] m relating function describing the mathematical relationship between the output, qot,
and input, qin, of component n

S - reference area

Sac i a] - sensitivity of the orientation control loop (Soc)

Srd [t ro ; 8, 1 - sensitivity of the rate damping loop ($rd)

(SR)rd - rate damping sensitivity ratio (SR)rd - Srd/Soc

5n [qin; lut] - static sensitivity of the performance function or relating function of component n
relating the output, qout, to the input, qin

T - thrust

V - booster velocity

. modification factor for natural bending characteristics of the ith mode when

the rocket engine is thrusting 1i " - Tg01 All

M42
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nx, y, or 2 " acceleration of booster center of mass in the positive x, y, or x direction

g - acceleration of gravity

k, - dimensional form of Ki; the form of the open loop gain actually used in performing root

locus factorizations.

Li - in 0, - I n X

is - distance between the booster center of mass and the nozzle gimbal point

in w distance between the center of mass of the nozzle and the gimbal point

4p - distance between center of pressure and the center of mass (positive for center of pressure
forward of the center of mass)

m - total mass of booster

Mn - mass of the nozzle

p - Laplace operator; a complex number p - a + j w (a and o are real numbers, j - )

q - dynamic pressure

q- generalized deflection coordinate of the ith bending mode

t time

u( ) - deflection from the undeformed elastic axis at the station identified by the subscript

v - translation of the rigid body from the x axis in the z direction due to negative nozzle

deflection (T - 0)

w - rotation of the rigid body centerline from x axis due to negative nozzle deflection (T - 0)

a - angle of attack - angle from the velocity vector to the undeformed elastic axis

S- angle from the reference trajectory to the local vertical

8 - nozzle deflection angle from the centerline of booster at the gimbal point to the centerline

of the rocket nozzle

s - hydraulic actuator output in units of equivalent nozzle deflection

SC - commanded nozzle deflection

) - damping ratio or effective damping ratio of the mode indicated by the subscript

9 - angle from the reference trajectory to the undeformed elastic axis

7- angle from the reference trajectory to the rigid body centerline (nozzle deflected)
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e- commanded 0ngle from reference trajectory to undeflected booster centerline

6( ) - angular velocity sensed by a gyro located at station indicated by subscript

A( )i - normalized ith bending mode slope amplitude at station identified by subscript A( )i "± i)
&( )i normalized ith bending mode deflection amplitude at station identified by subscript

€( ) slope of the booster centerline with respect to the undefonmed elastic axis at the station in-
dicated by the subscript

w( ) - undamped natural frequency or effective undamped natural frequency of the mode indicated by
the subscript

NOTES: (1) Station numbers ame distances from a reference point on the undeflected center line. This
reference is usually chosen forward of the nose and is positive in the opposite sense to
the x axis.

(2) All angles are defined as positive for a small angle vector treatment in which the vector
sense is positive.

SUBSCRIPTS

a - control system actuator or servo

i Ith bending mode (I - 1. 2, 3. •

ig - iate-integraig gro

b - booster

bcs - booster flight control system including booster

n w nozzle

rg - rate gyro

0, i- "tail-wags-dog" zero of rigid body or ith bending mode
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